Notation The forcing Near Coherence o

The model

# There may be no $\mathscr{I}$ -ultrafilter for any $F_{\sigma}$ ideal $\mathscr{I}$

Jonathan Cancino-Manríquez cancino@math.cas.cz

Institute of Mathematics of the Czech Academy of Sciences

February 4, 2022 Hejnice, Czech Republic

#### Introduction Notation

The forcing

Near Coherence Filters

The mode

**1** A subset  $\mathscr{I} \subseteq \mathcal{P}(\omega)$  is an **ideal** if it is closed under finite unions and under almost subsets, contains all finite subsets of  $\omega$ , and  $\omega \notin \mathscr{I}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Introduction Notation The forcing Near

- Coherence Filters
- The mode

- **1** A subset  $\mathscr{I} \subseteq \mathcal{P}(\omega)$  is an **ideal** if it is closed under finite unions and under almost subsets, contains all finite subsets of  $\omega$ , and  $\omega \notin \mathscr{I}$ .
- 2 A subset  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a **filter** if it is closed under finite intersections and under supersets, and contains all the cofinite subsets of  $\omega$ .

#### Introduction Notation The forcing Near

- Coherence Filters
- The mode

- **1** A subset  $\mathscr{I} \subseteq \mathcal{P}(\omega)$  is an **ideal** if it is closed under finite unions and under almost subsets, contains all finite subsets of  $\omega$ , and  $\omega \notin \mathscr{I}$ .
- 2 A subset  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a **filter** if it is closed under finite intersections and under supersets, and contains all the cofinite subsets of  $\omega$ .
- **3** An **ultrafilter** is a maximal filter respect to the inclusion relation  $\subseteq$ .

#### Introduction Notation The forcing Near

- Coherence ( Filters
- The mode

- **1** A subset  $\mathscr{I} \subseteq \mathcal{P}(\omega)$  is an **ideal** if it is closed under finite unions and under almost subsets, contains all finite subsets of  $\omega$ , and  $\omega \notin \mathscr{I}$ .
- 2 A subset  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a **filter** if it is closed under finite intersections and under supersets, and contains all the cofinite subsets of  $\omega$ .
- **3** An **ultrafilter** is a maximal filter respect to the inclusion relation  $\subseteq$ .
- **3** Given an ideal  $\mathscr{I}$ , the family of  $\mathscr{I}$ -**positive** sets is the complement of the ideal  $\mathscr{I}$ , that is,  $\mathscr{I}^+ = \mathcal{P}(\omega) \setminus \mathscr{I}$ .

#### Introduction Notation The forcing Near Coherence of

The mode

- **1** A subset  $\mathscr{I} \subseteq \mathcal{P}(\omega)$  is an **ideal** if it is closed under finite unions and under almost subsets, contains all finite subsets of  $\omega$ , and  $\omega \notin \mathscr{I}$ .
- 2 A subset  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a **filter** if it is closed under finite intersections and under supersets, and contains all the cofinite subsets of  $\omega$ .
- **3** An **ultrafilter** is a maximal filter respect to the inclusion relation  $\subseteq$ .
- Given an ideal 𝒴, the family of 𝒴-positive sets is the complement of the ideal 𝒴, that is, 𝒴<sup>+</sup> = 𝒫(ω) \ 𝒴.
- **6** Given a filter  $\mathcal{F}$  on  $\omega$ , the **dual ideal** to  $\mathcal{F}$ , denoted by  $\mathcal{F}^*$ , is defined as the family of complements of elements from  $\mathcal{F}$ , that is,

$$\mathcal{F}^* = \{\omega \setminus A : A \in \mathcal{F}\}$$

In a similar fashion we define the **dual filter** to a given ideal  $\mathscr{I}$ , and write  $\mathscr{I}^*$ .

#### Introduction Notation The forcing Near Coherence of

The model

- **1** A subset  $\mathscr{I} \subseteq \mathcal{P}(\omega)$  is an **ideal** if it is closed under finite unions and under almost subsets, contains all finite subsets of  $\omega$ , and  $\omega \notin \mathscr{I}$ .
- 2 A subset  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a **filter** if it is closed under finite intersections and under supersets, and contains all the cofinite subsets of  $\omega$ .
- **3** An **ultrafilter** is a maximal filter respect to the inclusion relation  $\subseteq$ .
- Given an ideal 𝒴, the family of 𝒴-positive sets is the complement of the ideal 𝒴, that is, 𝒴<sup>+</sup> = 𝒫(ω) \ 𝒴.
- **6** Given a filter  $\mathcal{F}$  on  $\omega$ , the **dual ideal** to  $\mathcal{F}$ , denoted by  $\mathcal{F}^*$ , is defined as the family of complements of elements from  $\mathcal{F}$ , that is,

$$\mathcal{F}^* = \{\omega \setminus A : A \in \mathcal{F}\}$$

In a similar fashion we define the dual filter to a given ideal 𝒴, and write 𝒴\*.
6 An ideal 𝒴 on ω is a p-ideal if for any {A<sub>n</sub> : n ∈ ω} ⊆ 𝒴 there is B ∈ 𝒴 such that for all n ∈ ω, A<sub>n</sub> ⊆\* B.

Introduction Notation The forcing Near Coherence of Filters

The model

We assume that all our ideals are **tall**, that is, for all  $A \in [\omega]^{\omega}$ , there is an infinite  $B \in \mathscr{I}$  such that  $B \subseteq A$ .

Introduction Notation

The forcing

Near Coherence Filters

The model

Some typical ideals on  $\boldsymbol{\omega}$  are the following:

1  $\mathcal{ED}$  is the ideal on  $\omega \times \omega$  generated by  $\{\{n\} \times \omega : n \in \omega\}$  and the graphs of functions from  $\omega$  to  $\omega$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Some typical ideals on  $\omega$  are the following:

Introduction

- 1  $\mathcal{ED}$  is the ideal on  $\omega \times \omega$  generated by  $\{\{n\} \times \omega : n \in \omega\}$  and the graphs of functions from  $\omega$  to  $\omega$ .
- 2  $\mathcal{ED}_{fin}$  is the restriction of  $\mathcal{ED}$  to  $\Delta = \{(n, m) : m \leq n\}$ .

Some typical ideals on  $\omega$  are the following:

Introduction

- 1  $\mathcal{ED}$  is the ideal on  $\omega \times \omega$  generated by  $\{\{n\} \times \omega : n \in \omega\}$  and the graphs of functions from  $\omega$  to  $\omega$ .
- 2  $\mathcal{ED}_{fin}$  is the restriction of  $\mathcal{ED}$  to  $\Delta = \{(n,m) : m \leq n\}.$
- 3 Summable ideals: are defined by a function  $f: \omega \to \mathbb{R}^+ \cup \{0\}$  such that  $\sum_{n \in \omega} f(n) = \infty$ , and  $A \in \mathscr{I}_f$  if and only if  $\sum_{n \in A} f(n) < \infty$ . A typical example is given by the function f(n) = 1/(n+1).

Some typical ideals on  $\omega$  are the following:

- 1  $\mathcal{ED}$  is the ideal on  $\omega \times \omega$  generated by  $\{\{n\} \times \omega : n \in \omega\}$  and the graphs of functions from  $\omega$  to  $\omega$ .
- 2  $\mathcal{ED}_{\textit{fin}}$  is the restriction of  $\mathcal{ED}$  to  $\Delta = \{(n,m) : m \leq n\}.$
- 3 Summable ideals: are defined by a function  $f: \omega \to \mathbb{R}^+ \cup \{0\}$  such that  $\sum_{n \in \omega} f(n) = \infty$ , and  $A \in \mathscr{I}_f$  if and only if  $\sum_{n \in A} f(n) < \infty$ . A typical example is given by the function f(n) = 1/(n+1).
- 4  $\mathcal{G}_{fc}$  is the ideal on  $[\omega]^2$  of graphs with finite chromatic number.

### Introduction Notation

- The forcing
- Near Coherence Filters

The model

Some typical ideals on  $\omega$  are the following:

- 1  $\mathcal{ED}$  is the ideal on  $\omega \times \omega$  generated by  $\{\{n\} \times \omega : n \in \omega\}$  and the graphs of functions from  $\omega$  to  $\omega$ .
- 2  $\mathcal{ED}_{\textit{fin}}$  is the restriction of  $\mathcal{ED}$  to  $\Delta = \{(n,m) : m \leq n\}.$
- 3 Summable ideals: are defined by a function  $f: \omega \to \mathbb{R}^+ \cup \{0\}$  such that  $\sum_{n \in \omega} f(n) = \infty$ , and  $A \in \mathscr{I}_f$  if and only if  $\sum_{n \in A} f(n) < \infty$ . A typical example is given by the function f(n) = 1/(n+1).
- 4  $\mathcal{G}_{fc}$  is the ideal on  $[\omega]^2$  of graphs with finite chromatic number.

### Introduction Notation

- The forcing
- Near Coherence Filters

The model

Some typical ideals on  $\omega$  are the following:

Introduction

- 1  $\mathcal{ED}$  is the ideal on  $\omega \times \omega$  generated by  $\{\{n\} \times \omega : n \in \omega\}$  and the graphs of functions from  $\omega$  to  $\omega$ .
- 2  $\mathcal{ED}_{fin}$  is the restriction of  $\mathcal{ED}$  to  $\Delta = \{(n,m) : m \leq n\}.$
- 3 Summable ideals: are defined by a function  $f: \omega \to \mathbb{R}^+ \cup \{0\}$  such that  $\sum_{n \in \omega} f(n) = \infty$ , and  $A \in \mathscr{I}_f$  if and only if  $\sum_{n \in A} f(n) < \infty$ . A typical example is given by the function f(n) = 1/(n+1).
- 4  $\mathcal{G}_{fc}$  is the ideal on  $[\omega]^2$  of graphs with finite chromatic number.

All of these ideals have complexity  $F_{\sigma}$ .

#### The forcir

Near Coherence Filters

The mode

5 Fin × Fin is the ideal generated by  $\{\{n\} \times \omega : n \in \omega\}$  and  $\{D(f) : f \in \omega^{\omega}\}$ , where  $D(f) = \{(n, m); n \in \omega \land m \leq f(n)\}$ .

- The forcin
- Near Coherence Filters

The model

5 Fin × Fin is the ideal generated by  $\{\{n\} \times \omega : n \in \omega\}$  and  $\{D(f) : f \in \omega^{\omega}\}$ , where  $D(f) = \{(n, m); n \in \omega \land m \leq f(n)\}$ .

6 nwd is the ideal of nowhere dense subsets of the rationals.

- The forcing
- Near Coherence Filters
- The mode

- 5 Fin × Fin is the ideal generated by  $\{\{n\} \times \omega : n \in \omega\}$  and  $\{D(f) : f \in \omega^{\omega}\}$ , where  $D(f) = \{(n, m); n \in \omega \land m \leq f(n)\}$ .
  - 6 nwd is the ideal of nowhere dense subsets of the rationals.
  - 7 conv is the ideal on  $[0,1]\cap \mathbb{Q}$  generated by convergent sequences of rationals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- The forcing
- Near Coherence Filters
- The mode

- 5 Fin × Fin is the ideal generated by  $\{\{n\} \times \omega : n \in \omega\}$  and  $\{D(f) : f \in \omega^{\omega}\}$ , where  $D(f) = \{(n, m); n \in \omega \land m \leq f(n)\}$ .
  - 6 nwd is the ideal of nowhere dense subsets of the rationals.
  - 7 conv is the ideal on  $[0,1]\cap \mathbb{Q}$  generated by convergent sequences of rationals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Introduction Notation

- The forcing
- Near Coherence Filters
- The mode

5 Fin × Fin is the ideal generated by  $\{\{n\} \times \omega : n \in \omega\}$  and  $\{D(f) : f \in \omega^{\omega}\}$ , where  $D(f) = \{(n, m); n \in \omega \land m \leq f(n)\}$ .

6 nwd is the ideal of nowhere dense subsets of the rationals.

 $7 \,$  conv is the ideal on  $[0,1] \cap \mathbb{Q}$  generated by convergent sequences of rationals.

conv and Fin × Fin have complexity  $F_{\sigma\delta\sigma}$ , while nwd has complexity  $F_{\sigma\delta}$ .

・ロト・西・・田・・田・・日・

#### Introduction Notation

The forcing

Near Coherence Filters

The mode

## Definition(J. Baumgartner, 1993)

Let  ${\mathscr I}$  be an ideal and  ${\mathcal U}$  an ultrafilter, both of them on  $\omega$ 

**1**  $\mathcal{U}$  is an  $\mathscr{I}$ -ultrafilter if for any function  $f \in \omega^{\omega}$ , there is  $A \in \mathcal{U}$  such that  $f[A] \in \mathscr{I}$ .

#### Introduction Notation

The forcing

Near Coherence Filters

The mode

## Definition(J. Baumgartner, 1993)

Let  ${\mathscr I}$  be an ideal and  ${\mathcal U}$  an ultrafilter, both of them on  $\omega$ 

- **1**  $\mathcal{U}$  is an  $\mathscr{I}$ -ultrafilter if for any function  $f \in \omega^{\omega}$ , there is  $A \in \mathcal{U}$  such that  $f[A] \in \mathscr{I}$ .
- **2**  $\mathcal{U}$  is a weak  $\mathscr{I}$ -ultrafilter if for any finite to one function  $f \in \omega^{\omega}$ , there is  $A \in \mathcal{U}$  such that  $f[A] \in \mathscr{I}$ .

The forcin

Near Coherence Filters

The mode

Many combinatorial properties of ultrafilters on  $\omega$  can be stated in terms of being an  $\mathscr{I}$ -ultrafilter for a suitable ideal  $\mathscr{I}$ , for example:

**1**  $\mathcal{U}$  is selective if and only if  $\mathcal{U}$  is a  $\mathcal{ED}$ -ultrafilter.

The forcin

Near Coherence Filters

The mode

Many combinatorial properties of ultrafilters on  $\omega$  can be stated in terms of being an  $\mathscr{I}$ -ultrafilter for a suitable ideal  $\mathscr{I}$ , for example:

1)  $\mathcal{U}$  is selective if and only if  $\mathcal{U}$  is a  $\mathcal{ED}$ -ultrafilter.

**2**  $\mathcal{U}$  is a q-point if and only if  $\mathcal{U}$  is a weak  $\mathcal{ED}_{fin}$ -ultrafilter.

The forcing

Near Coherence Filters

The mode

Many combinatorial properties of ultrafilters on  $\omega$  can be stated in terms of being an  $\mathscr{I}$ -ultrafilter for a suitable ideal  $\mathscr{I}$ , for example:

(1)  $\mathcal{U}$  is selective if and only if  $\mathcal{U}$  is a  $\mathcal{ED}$ -ultrafilter.

**2**  $\mathcal{U}$  is a q-point if and only if  $\mathcal{U}$  is a weak  $\mathcal{ED}_{fin}$ -ultrafilter.

**3**  $\mathcal{U}$  is a p-point if and only if  $\mathcal{U}$  is a Fin  $\times$  Fin - *ultrafilter*.

The forcing

Near Coherence Filters

The mode

Many combinatorial properties of ultrafilters on  $\omega$  can be stated in terms of being an  $\mathscr{I}$ -ultrafilter for a suitable ideal  $\mathscr{I}$ , for example:

- (1)  $\mathcal{U}$  is selective if and only if  $\mathcal{U}$  is a  $\mathcal{ED}$ -ultrafilter.
- **2**  $\mathcal{U}$  is a q-point if and only if  $\mathcal{U}$  is a weak  $\mathcal{ED}_{fin}$ -ultrafilter.
- **3**  $\mathcal{U}$  is a p-point if and only if  $\mathcal{U}$  is a Fin  $\times$  Fin *ultrafilter*.
- 𝔄 𝒰 is rapid if and only if for any summable ideal 𝒴 it holds that 𝔅 is a weak 𝒴-ultrafilter.

The forcing

Near Coherence Filters

The mode

Many combinatorial properties of ultrafilters on  $\omega$  can be stated in terms of being an  $\mathscr{I}$ -ultrafilter for a suitable ideal  $\mathscr{I}$ , for example:

- (1)  $\mathcal{U}$  is selective if and only if  $\mathcal{U}$  is a  $\mathcal{ED}$ -ultrafilter.
- ${\it 2} \ {\it U}$  is a q-point if and only if  ${\it U}$  is a weak  ${\it {ED}_{\it fin}}\mbox{-ultrafilter}.$
- **3**  $\mathcal{U}$  is a p-point if and only if  $\mathcal{U}$  is a Fin  $\times$  Fin *ultrafilter*.
- U is rapid if and only if for any summable ideal I it holds that U is a weak
   I-ultrafilter.

**5**  $\mathcal{U}$  is a Hausdorff ultrafilter if and only if  $\mathcal{U}$  is a  $\mathcal{G}_{fc}$ -ultrafilter.

#### Notation

The forcing

Near Coherence Filters

The mode

### Theorem

The following are relatively consistent with ZFC:

(K. Kunen) There is no selective ultrafilter.

#### Notation

The forcing

Near Coherence Filters

The mode

## Theorem

The following are relatively consistent with ZFC:

- (K. Kunen) There is no selective ultrafilter.
- **2** (S. Shelah) There is no p-point.

#### Notation

- The forcing
- Near Coherence Filters
- The mode

## Theorem

The following are relatively consistent with ZFC:

- (K. Kunen) There is no selective ultrafilter.
- (S. Shelah) There is no p-point.
- **3** (A. W. Miller) There is no q-point.

#### Notation

- The forcing
- Near Coherence Filters
- The mode

## Theorem

The following are relatively consistent with ZFC:

- (K. Kunen) There is no selective ultrafilter.
- (S. Shelah) There is no p-point.
- **3** (A. W. Miller) There is no q-point.
- (A. W. Miller) There is no rapid ultrafilter.

#### Notation

- The forcing
- Near Coherence Filters
- The mode

## Theorem

The following are relatively consistent with ZFC:

- (K. Kunen) There is no selective ultrafilter.
- (S. Shelah) There is no p-point.
- **3** (A. W. Miller) There is no q-point.
- (A. W. Miller) There is no rapid ultrafilter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

**(**S. Shelah) There is no nwd-ultrafilter.

#### Notation

- The forcing
- Near Coherence Filters
- The mode

## Theorem

The following are relatively consistent with ZFC:

- (K. Kunen) There is no selective ultrafilter.
- **2** (S. Shelah) There is no p-point.
- **3** (A. W. Miller) There is no q-point.
- (A. W. Miller) There is no rapid ultrafilter.
- **(**S. Shelah) There is no nwd-ultrafilter.
- 6 (S. Shelah) There is no ultrafilter with property M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Introduction Notation The forcing Near Coherence of Filters

A natural question that raises by watching the previous examples is the following:

#### Question

Is there a Borel ideal  $\mathscr I$  for which there is an  $\mathscr I\text{-ultrafilter}\,\mathcal U$  or a weak  $\mathscr I\text{-ultrafilter}?$ 

Notation

The forcing

Near Coherence Filters

The model

## Theorem(O. Guzmán González, M. Hrušák)

(O. Guzmán González, M. Hrušák) There is an  $F_{\sigma\delta\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist generically.

#### Introduction Notation The forcing Near

Coherence o Filters

The mode

## Theorem(O. Guzmán González, M. Hrušák)

(O. Guzmán González, M. Hrušák) There is an  $F_{\sigma\delta\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist generically.

## Theorem(O. Guzmán González, M. Hrušák)

It is relatively consistent that for any  $F_{\sigma\delta}$  ideal  $\mathscr{I}$  generic existence of  $\mathscr{I}$ -ultrafilters does not hold, i. e., there is a filter with a small generating set( $< 2^{\omega}$ ) which can not be extended to an  $\mathscr{I}$ -ultrafilter.

The forcing

Near Coherence o Filters

The mode

They left open the following question:



#### Introduction Notation The forcing Near Coherence o Filters

The mode

They left open the following question:

## Question

Is there an  $F_{\sigma}$  ideal for which  $\mathscr{I}$ -ultrafilters exist?



#### Introduction Notation The forcing Near Coherence of Filters

The mode

They left open the following question:

### Question Is there an $F_{\sigma}$ ideal for which $\mathscr{I}$ -ultrafilters exist?

Answer: Consistently no.

#### Introduction Notation The forcing Near Coherence of Filters

#### The model

Theorem

It is relatively consistent with ZFC that for every  $F_{\sigma}$  ideal  $\mathscr{I}$ ,  $\mathscr{I}$ -ultrafilters do not exist. Not even weak  $\mathscr{I}$ -ultrafilters.

#### Introduction Notation The forcing

Near Coherence o Filters

The model

This theorem answers several questions appearing along the literature:

**(** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?

The forcing

Near Coherence o Filters

The model

This theorem answers several questions appearing along the literature:

**(** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?

2 (M. DiNasso, M. Forti) Do Hausdorff ultrafilters exist in ZFC?

The forcing

Near Coherence Filters

The model

This theorem answers several questions appearing along the literature:

**(** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 2 (M. DiNasso, M. Forti) Do Hausdorff ultrafilters exist in ZFC?
- (M. DiNasso, M. Forti) Does the existence of proper ultrafilters semirings follow from ZFC?

The forcing

Near Coherence Filters

The mode

This theorem answers several questions appearing along the literature:

- **(** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?
- (M. DiNasso, M. Forti) Do Hausdorff ultrafilters exist in ZFC?
- (M. DiNasso, M. Forti) Does the existence of proper ultrafilters semirings follow from ZFC?
- 4 (J. Flašková) Do Z-ultrafilters and  $\mathscr{I}_{1/n}$ -ultrafilters exist in ZFC?

The forcing

Near Coherence Filters

The model

This theorem answers several questions appearing along the literature:

**1** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 2 (M. DiNasso, M. Forti) Do Hausdorff ultrafilters exist in ZFC?
- (M. DiNasso, M. Forti) Does the existence of proper ultrafilters semirings follow from ZFC?
- 4 (J. Flašková) Do Z-ultrafilters and  $\mathscr{I}_{1/n}$ -ultrafilters exist in ZFC?
- **5** (J. Flašková) Do weak *I*-ultrafilters exist for some summable ideal?

The forcing

Near Coherence Filters

The model

This theorem answers several questions appearing along the literature:

- **(** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?
- (M. DiNasso, M. Forti) Do Hausdorff ultrafilters exist in ZFC?
- **3** (M. DiNasso, M. Forti) Does the existence of proper ultrafilters semirings follow from ZFC?
- 4 (J. Flašková) Do Z-ultrafilters and  $\mathscr{I}_{1/n}$ -ultrafilters exist in ZFC?
- **5** (J. Flašková) Do weak *I*-ultrafilters exist for some summable ideal?
- (J. Flašková) Is it true that whenever the cardinality of D[a family of summable ideals] is less than ∂ then there exist an ultrafilter on the natural numbers which is an *I*-ultrafilter for any *I* ∈ D but not a rapid ultrafilter?

The forcing

Near Coherence Filters

The model

This theorem answers several questions appearing along the literature:

- **1** (O. Guzmán, M. Hrušák) Is there an  $F_{\sigma}$  ideal  $\mathscr{I}$  for which  $\mathscr{I}$ -ultrafilters exist?
- (M. DiNasso, M. Forti) Do Hausdorff ultrafilters exist in ZFC?
- 6 (M. DiNasso, M. Forti) Does the existence of proper ultrafilters semirings follow from ZFC?
- 4 (J. Flašková) Do Z-ultrafilters and  $\mathscr{I}_{1/n}$ -ultrafilters exist in ZFC?
- **5** (J. Flašková) Do weak *I*-ultrafilters exist for some summable ideal?
- (J. Flašková) Is it true that whenever the cardinality of D[a family of summable ideals] is less than ∂ then there exist an ultrafilter on the natural numbers which is an *I*-ultrafilter for any *I* ∈ D but not a rapid ultrafilter?
- ⑦ (M. Benedikt) Is there an ultrafilter with property M? (Originally answered by Shelah).

### Introduction Notation

The forcing

Near Coherence Filters

The mode

## Definition

1  $\varphi(\omega) = \infty$ .

#### Introduction Notation The forcing

Near Coherence Filters

The mode

## Definition

1 
$$\varphi(\omega) = \infty.$$
  
2  $(\forall A \in \mathcal{P}(\omega))(\varphi(A) \ge 0).$ 

#### Introduction Notation The forcing

Near Coherence Filters

The mode

## Definition

1 
$$\varphi(\omega) = \infty$$
.  
2  $(\forall A \in \mathcal{P}(\omega))(\varphi(A) \ge 0)$ .  
3  $(\forall A, B \in \mathcal{P}(\omega))(A \subseteq B \to \varphi(A) \le \varphi(B))$ 

### Introduction Notation The forcing

Near Coherence Filters

The mode

## Definition

A function  $\varphi : \mathcal{P}(\omega) \to \mathbb{R} \cup \{\infty\}$  is a lower semicontinuous submeasure, shorted as lscsm, if it satisfies the following:

).

1 
$$\varphi(\omega) = \infty$$
.  
2  $(\forall A \in \mathcal{P}(\omega))(\varphi(A) \ge 0)$ .  
3  $(\forall A, B \in \mathcal{P}(\omega))(A \subseteq B \to \varphi(A) \le \varphi(B))$   
4  $(\forall A, B \in \mathcal{P}(\omega))(\varphi(A \cup B) \le \varphi(A) + \varphi(B))$ 

### Introduction Notation The forcing

Near Coherence Filters

The mode

## Definition

A function  $\varphi : \mathcal{P}(\omega) \to \mathbb{R} \cup \{\infty\}$  is a lower semicontinuous submeasure, shorted as lscsm, if it satisfies the following:

1 
$$\varphi(\omega) = \infty$$
.  
2  $(\forall A \in \mathcal{P}(\omega))(\varphi(A) \ge 0)$ .  
3  $(\forall A, B \in \mathcal{P}(\omega))(A \subseteq B \to \varphi(A) \le \varphi(B))$   
4  $(\forall A, B \in \mathcal{P}(\omega))(\varphi(A \cup B) \le \varphi(A) + \varphi(B))$ .  
5  $(\forall A \in \mathcal{P}(\omega))(\lim_{n \to \infty} \varphi(A \cap n) = \varphi(A))$ .

・ロト 《四下 《田下 《田下 』 うらぐ

### Introduction Notation The forcing

Near Coherence Filters

The mode

## Definition

1 
$$\varphi(\omega) = \infty$$
.  
2  $(\forall A \in \mathcal{P}(\omega))(\varphi(A) \ge 0)$ .  
3  $(\forall A, B \in \mathcal{P}(\omega))(A \subseteq B \to \varphi(A) \le \varphi(B))$   
4  $(\forall A, B \in \mathcal{P}(\omega))(\varphi(A \cup B) \le \varphi(A) + \varphi(B))$ .  
5  $(\forall A \in \mathcal{P}(\omega))(\lim_{n \to \infty} \varphi(A \cap n) = \varphi(A))$ .  
6  $(\forall n \in \omega)(\varphi(\{n\}) < \infty)$ .

#### Introduction Notation The forcing Near Coherence of Filters

The mode

## Theorem(Mazur)

An ideal  $\mathscr{I}$  is an  $F_{\sigma}$  ideal provided there is a lscsm  $\varphi$  such that  $\mathscr{I} = Fin(\varphi) = \{A \in \mathcal{P}(\omega) : \varphi(A) < \infty\}.$ 

#### Notation

The forcing

Near Coherence c Filters

The model

 $1~\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.



Notation

The forcing

Near Coherence Filters

The model

 $1~\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.

2 For  $s \in \omega^{<\omega}$  and  $k \in \omega$ ,  $s \frown k$  denotes the sequence obtained by adding k to the end of s.

#### Notation

- The forcing
- Near Coherence o Filters
- The model

- $1~\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.
- 2 For  $s \in \omega^{<\omega}$  and  $k \in \omega$ ,  $s \cap k$  denotes the sequence obtained by adding k to the end of s.
- 3 For  $s \in \omega^{<\omega}$ , |s| denotes the length of the sequence s.

- $1~\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.
- 2 For  $s \in \omega^{<\omega}$  and  $k \in \omega$ ,  $s \frown k$  denotes the sequence obtained by adding k to the end of s.

- 3 For  $s \in \omega^{<\omega}$ , |s| denotes the length of the sequence s.
- 4 A subset  $T \subseteq \omega^{<\omega}$  is a tree if for any  $s \in T$  and  $n \leq |s|$ , it holds that  $s \upharpoonright n \in T$ . The elements of T will be called nodes.

Introduction

#### Notation

The forcing

Near Coherence Filters

The model

- $1~\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.
- 2 For  $s \in \omega^{<\omega}$  and  $k \in \omega$ ,  $s \frown k$  denotes the sequence obtained by adding k to the end of s.
- 3 For  $s \in \omega^{<\omega}$ , |s| denotes the length of the sequence s.
- 4 A subset  $T \subseteq \omega^{<\omega}$  is a tree if for any  $s \in T$  and  $n \leq |s|$ , it holds that  $s \upharpoonright n \in T$ . The elements of T will be called nodes.
- 5 For a tree  $T \subseteq \omega^{<\omega}$  and  $s \in T$ , the set of successors of s in T is defined as  $succ_T(s) = \{k \in \omega : s^{\frown}k \in T\}.$

ntroduction

#### Notation

The forcing

Near Coherence o Filters

The model

- $1~\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.
- 2 For  $s \in \omega^{<\omega}$  and  $k \in \omega$ ,  $s \frown k$  denotes the sequence obtained by adding k to the end of s.
- 3 For  $s \in \omega^{<\omega}$ , |s| denotes the length of the sequence s.
- 4 A subset  $T \subseteq \omega^{<\omega}$  is a tree if for any  $s \in T$  and  $n \leq |s|$ , it holds that  $s \upharpoonright n \in T$ . The elements of T will be called nodes.
- 5 For a tree  $T \subseteq \omega^{<\omega}$  and  $s \in T$ , the set of successors of s in T is defined as  $succ_T(s) = \{k \in \omega : s^{\frown}k \in T\}.$

6 For a tree  $T \subseteq \omega^{<\omega}$ , the set of splitting nodes of T is defined as  $split(T) = \{s \in T : |succ_T(s)| > 1\}.$ 

ntroductio

#### Notation

The forcing

Near Coherence of Filters

The model

Notation

- 1  $\omega^{<\omega}$  denotes the family of all finite sequences of natural numbers.
- 2 For  $s \in \omega^{<\omega}$  and  $k \in \omega$ ,  $s \frown k$  denotes the sequence obtained by adding k to the end of s.
- 3 For  $s \in \omega^{<\omega}$ , |s| denotes the length of the sequence s.
- 4 A subset  $T \subseteq \omega^{<\omega}$  is a tree if for any  $s \in T$  and  $n \leq |s|$ , it holds that  $s \upharpoonright n \in T$ . The elements of T will be called nodes.
- 5 For a tree  $T \subseteq \omega^{<\omega}$  and  $s \in T$ , the set of succesors of s in T is defined as  $succ_T(s) = \{k \in \omega : s^{\frown}k \in T\}.$
- 6 For a tree  $T \subseteq \omega^{<\omega}$ , the set of splitting nodes of T is defined as  $split(T) = \{s \in T : |succ_T(s)| > 1\}.$
- 7 For a tree  $T \subseteq \omega^{<\omega}$  and  $s \in T$ ,  $T \upharpoonright s$  denotes the set of all nodes in T which are  $\subseteq$ -comparable with s.

#### Introduction

#### Notation

The forcing

Near Coherence Filters

The mode

### Notation

8 Given a tree  $T \subseteq \omega^{<\omega}$ , we denote by  $(T)_n$  the set of all nodes in T with length exactly n, that is  $(T)_n = \{s \in T : |s| = n\}$ .

#### Introduction

#### Notation

The forcing

Near Coherence Filters

The mode

### Notation

- 8 Given a tree  $T \subseteq \omega^{<\omega}$ , we denote by  $(T)_n$  the set of all nodes in T with length exactly n, that is  $(T)_n = \{s \in T : |s| = n\}$ .
- 9 For a tree  $T \subseteq \omega^{<\omega}$  and a non-empty  $F \subseteq \omega$ , define  $(T)_F = \bigcup_{n \in F} (T)_n$ .

#### Introduction

#### Notation

The forcing

Near Coherence Filters

The mode

#### Notation

- 8 Given a tree  $T \subseteq \omega^{<\omega}$ , we denote by  $(T)_n$  the set of all nodes in T with length exactly n, that is  $(T)_n = \{s \in T : |s| = n\}$ .
- 9 For a tree  $T \subseteq \omega^{<\omega}$  and a non-empty  $F \subseteq \omega$ , define  $(T)_F = \bigcup_{n \in F} (T)_n$ .
- 10 For a set  $S \subseteq \omega^{<\omega}$ , define the tree generated by S, denoted gt(S), as follows:

$$gt(S) = \{s \in \omega^{<\omega} : (\exists r \in S)(s \subseteq r)\}$$

#### Introductio

#### Notation

The forcing

Near Coherence Filters

The model

### Definition

A tree  $T \subseteq \omega^{<\omega}$  is a superperfect tree if it satisfies the following conditions:

**1** For all  $s \in T$ , s is a strictly increasing sequence.

#### Introductio

#### Notation

The forcing

Near Coherence o Filters

The mode

### Definition

A tree  $T \subseteq \omega^{<\omega}$  is a superperfect tree if it satisfies the following conditions:

**1** For all  $s \in T$ , s is a strictly increasing sequence.

**2** For all  $s \in T$ , there is  $r \in split(T)$  such that  $s \subseteq r$ .

#### Introductio

#### Notation

The forcing

Near Coherence c Filters

The model

### Definition

A tree  $T \subseteq \omega^{<\omega}$  is a superperfect tree if it satisfies the following conditions:

**1** For all  $s \in T$ , s is a strictly increasing sequence.

**2** For all  $s \in T$ , there is  $r \in split(T)$  such that  $s \subseteq r$ .

**3** For all  $s \in split(T)$ ,  $succ_T(s)$  is infinite.

#### Introductio

#### Notation

The forcing

Near Coherence c Filters

The model

### Definition

A tree  $T \subseteq \omega^{<\omega}$  is a superperfect tree if it satisfies the following conditions:

**1** For all  $s \in T$ , s is a strictly increasing sequence.

**2** For all  $s \in T$ , there is  $r \in split(T)$  such that  $s \subseteq r$ .

**3** For all  $s \in split(T)$ ,  $succ_T(s)$  is infinite.

#### miroductic

#### Notation

The forcing

Near Coherence c Filters

The model

### Definition

A tree  $T \subseteq \omega^{<\omega}$  is a superperfect tree if it satisfies the following conditions:

**1** For all  $s \in T$ , s is a strictly increasing sequence.

**2** For all  $s \in T$ , there is  $r \in split(T)$  such that  $s \subseteq r$ .

**3** For all  $s \in split(T)$ ,  $succ_T(s)$  is infinite.

### Definition

The Miller's forcing, denoted by PT, is the partial order whose members are all the superperfect trees, ordered by set inclusion, that is, given  $S, T \in PT$ ,  $S \leq T$  if and only if  $S \subseteq T$ .

### Notation

#### The forcing

Near Coherence Filters

The mode

# For $T \in PT$ , we denote by st(T) the stem of condition T, which is the unique splitting node in T with minimal length.

The forcing

Near Coherence c Filters

The model

In what follows we fix an  $F_{\sigma}$  ideal  $\mathscr{I}$ , and  $\varphi$  denotes a lscsm which defines the ideal  $\mathscr{I}$ , that is  $\mathscr{I} = Fin(\varphi)$ .

## The forcing

### Notation

#### The forcing

Near Coherence Filters

The mode

### Definición

Let  $T \in \mathsf{PT}$  be a condition in the Miller's forcing and  $m \in \omega$ . We say that a node  $s \in T$  is  $(T, \varphi, m)$ -good, if there is  $F_s^T \in [\omega]^{<\omega}$  such that: **1**  $|s| = \min(F_s^T)$ .

## The forcing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

### Notation

#### The forcing

Near Coherence Filters

The mode

### Definición

Let  $T \in PT$  be a condition in the Miller's forcing and  $m \in \omega$ . We say that a node  $s \in T$  is  $(T, \varphi, m)$ -good, if there is  $F_s^T \in [\omega]^{<\omega}$  such that: 1  $|s| = \min(F_s^T)$ . 2  $\varphi(F_s^T) > m$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

### Notation

#### The forcing

Near Coherence Filters

The mode

### Definición

Let  $T \in \mathsf{PT}$  be a condition in the Miller's forcing and  $m \in \omega$ . We say that a node  $s \in T$  is  $(T, \varphi, m)$ -good, if there is  $F_s^T \in [\omega]^{<\omega}$  such that:  $|s| = \min(F_s^T)$ .  $\varphi(F_s^T) > m$ .  $(T \upharpoonright s)_{F_s^T} \subseteq split_T(s)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

### Notation

#### The forcing

Near Coherence Filters

The mode

### Definición

Let  $T \in \mathsf{PT}$  be a condition in the Miller's forcing and  $m \in \omega$ . We say that a node  $s \in T$  is  $(T, \varphi, m)$ -good, if there is  $F_s^T \in [\omega]^{<\omega}$  such that:  $|s| = \min(F_s^T)$ .  $\varphi(F_s^T) > m$ .  $(T \upharpoonright s)_{F_s^T} \subseteq split_T(s)$ .

### Notation

#### The forcing

Near Coherence o Filters

The mode

### Definición

Let  $T \in \mathsf{PT}$  be a condition in the Miller's forcing and  $m \in \omega$ . We say that a node  $s \in T$  is  $(T, \varphi, m)$ -good, if there is  $F_s^T \in [\omega]^{<\omega}$  such that: 1  $|s| = \min(F_s^T)$ . 2  $\varphi(F_s^T) > m$ . 3  $(T \upharpoonright s)_{F_s^T} \subseteq split_T(s)$ . We say that a tree  $T \in \mathsf{PT}$  is  $\varphi$ -good if: 1 For any  $m \in \omega$  and any  $s \in T$ , there is a  $(T, \varphi, m)$ -good node  $t \in T$ 

**1** For any  $m \in \omega$  and any  $s \in I$ , there is a  $(I, \varphi, m)$ -good node  $t \in I$  extending the node s.

### Notation

#### The forcing

Near Coherence o Filters

The mode

### Definición

Let  $T \in \mathsf{PT}$  be a condition in the Miller's forcing and  $m \in \omega$ . We say that a node  $s \in T$  is  $(T, \varphi, m)$ -good, if there is  $F_s^T \in [\omega]^{<\omega}$  such that: 1  $|s| = \min(F_s^T)$ . 2  $\varphi(F_s^T) > m$ . 3  $(T \upharpoonright s)_{F_s^T} \subseteq split_T(s)$ . We say that a tree  $T \in \mathsf{PT}$  is  $\varphi$ -good if:

- **1** For any  $m \in \omega$  and any  $s \in T$ , there is a  $(T, \varphi, m)$ -good node  $t \in T$  extending the node s.
- Por any node s ∈ split(T), there is a (T, φ, m)-good node r ∈ T for some m ∈ ω, such that s ∈ (T ↾ r)<sub>F<sub>s</sub></sub>.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

#### Notation

#### The forcing

Near Coherence c Filters

The mode

### Definition

We define the forcing  $PT(\varphi)$  as the set of all superperfect trees which are  $\varphi$ -good, ordered by set inclusion.



Notation

The forcing

Near Coherence o Filters

The mode

Lemma 1 The forcing  $PT(\varphi)$  has Axiom A, therefore  $PT(\varphi)$  is a proper forcing.



### I-ultrafilters destruction

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

#### Notation

The forcing

Near Coherence o Filters

The mode

### Definition

Let  $\dot{G}$  be a generic filter for  $PT(\varphi)$ . We define the generic real  $\dot{x}_{gen}$  as:

$$\dot{x}_{gen} = \bigcup \bigcap \dot{G}$$

### I-ultrafilters destruction

#### Definition

The forcing

Let  $\dot{G}$  be a generic filter for  $PT(\varphi)$ . We define the generic real  $\dot{x}_{gen}$  as:

$$\dot{x}_{gen} = \bigcup \bigcap \dot{G}$$

### Definition

Let  $\dot{x}_{gen}$  be the generic real added by  $\dot{G}$ . We define the function  $\dot{f}_{gen}$  as:

$$\dot{f}_{gen}(n) = k \iff n \in (\dot{x}_{gen}(k-1), \dot{x}_{gen}(k))$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### I-ultrafilters destruction

#### Notation

#### The forcing

Near Coherence o Filters

The mode

Lemma 2 PT( $\varphi$ ) forces that for all  $A \in [\omega]^{\omega} \cap V$ ,  $\varphi(\dot{f}_{gen}[A]) = \infty$ .

#### Notation

#### The forcing

Near Coherence Filters

The mode

### Lemma 3

Let  $\dot{x}$  be a  $PT(\varphi)$ -name for an infinite subset of  $\omega$ , and let  $T \in PT(\varphi)$  be a condition. There is  $T' \leq T$  such that:

1 
$$F_{st(T')}^{T'} = F_{st(T)}^{T}$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Notation

#### The forcing

Near Coherence Filters

The mode

### Lemma 3

Let  $\dot{x}$  be a  $PT(\varphi)$ -name for an infinite subset of  $\omega$ , and let  $T \in PT(\varphi)$  be a condition. There is  $T' \leq T$  such that:

1 
$$F_{st(T')}^{T'} = F_{st(T)}^{T}$$
.

2 For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$  and for all but finitely many  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Notation

#### The forcing

Near Coherence Filters

The mode

### Lemma 3

Let  $\dot{x}$  be a  $PT(\varphi)$ -name for an infinite subset of  $\omega$ , and let  $T \in PT(\varphi)$  be a condition. There is  $T' \leq T$  such that:

1 
$$F_{st(T')}^{T'} = F_{st(T)}^{T}$$
.

2 For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$  and for all but finitely many  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

#### Votation

#### The forcing

Near Coherence Filters

The mode

### Lemma 3

Let  $\dot{x}$  be a  $PT(\varphi)$ -name for an infinite subset of  $\omega$ , and let  $T \in PT(\varphi)$  be a condition. There is  $T' \leq T$  such that:

1 
$$F_{st(T')}^{T'} = F_{st(T)}^{T}$$
.

2 For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$  and for all but finitely many  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

Proof: induction over the size of  $F_{st(T)}^{T}$ .

### Lemma 4

The forcing Near Coherence of Filters

The model

# Let $\mathcal{U}$ be an ultrafilter, $\dot{x}$ a PT( $\varphi$ )-name for an infinite subset of $\omega$ , and $T \in PT(\varphi)$ a condition. Then there is $T' \leq T$ such that:

 $(\mathbf{F}_{st(T')}^{T'}) \geq \varphi(\mathbf{F}_{st(T)}^{T})/2.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Lemma 4

The forcing

Let  $\mathcal{U}$  be an ultrafilter,  $\dot{x} \in \mathsf{PT}(\varphi)$ -name for an infinite subset of  $\omega$ , and  $\mathcal{T} \in \mathsf{PT}(\varphi)$  a condition. Then there is  $\mathcal{T}' \leq \mathcal{T}$  such that:

- $(\mathbf{F}_{st(T')}^{T'}) \geq \varphi(F_{st(T)}^{T})/2.$
- 2 For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$ , for all but finitely may  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Lemma 4

The forcing

Let  $\mathcal{U}$  be an ultrafilter,  $\dot{x} \in \mathsf{PT}(\varphi)$ -name for an infinite subset of  $\omega$ , and  $\mathcal{T} \in \mathsf{PT}(\varphi)$  a condition. Then there is  $\mathcal{T}' \leq \mathcal{T}$  such that:

- $(\mathbf{F}_{st(T')}^{T'}) \geq \varphi(F_{st(T)}^{T})/2.$
- 2 For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$ , for all but finitely may  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

3 It happens exactly one of the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

### Lemma 4

The forcing

Let  $\mathcal{U}$  be an ultrafilter,  $\dot{x} \in \mathsf{PT}(\varphi)$ -name for an infinite subset of  $\omega$ , and  $\mathcal{T} \in \mathsf{PT}(\varphi)$  a condition. Then there is  $\mathcal{T}' \leq \mathcal{T}$  such that:

- $(\mathbf{F}_{st(T')}^{T'}) \geq \varphi(F_{st(T)}^{T})/2.$
- ② For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$ , for all but finitely may  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

3 It happens exactly one of the following:
1 For all f ∈ (T')<sub>F<sup>T'</sup><sub>st(T')</sub></sub>, X<sub>f</sub> ∈ U.

### Lemma 4

The forcing

Let  $\mathcal{U}$  be an ultrafilter,  $\dot{x} \in \mathsf{PT}(\varphi)$ -name for an infinite subset of  $\omega$ , and  $\mathcal{T} \in \mathsf{PT}(\varphi)$  a condition. Then there is  $\mathcal{T}' \leq \mathcal{T}$  such that:

- $(\mathbf{F}_{st(T')}^{T'}) \geq \varphi(F_{st(T)}^{T})/2.$
- 2 For each  $f \in (T')_{F_{st(T')}^{T'}}$  there is a set  $X_f \subseteq \omega$  such that for all  $n \in \omega$ , for all but finitely may  $k \in succ_{T'}(f)$ :

$$T' \upharpoonright f^{\frown}k \Vdash "\dot{x} \cap n = X_f \cap n"$$

3 It happens exactly one of the following:

1 For all 
$$f \in (T')_{F_{st(T')}^{T'}}$$
,  $X_f \in \mathcal{U}$ .  
2 For all  $f \in (T')_{F_{st(T')}^{T'}}$ ,  $\omega \setminus X_f \in \mathcal{U}$ 

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�♡

#### Notation

#### The forcing

Near Coherence o Filters

The mode

## Lemma 5 Let $T \in PT(\varphi)$ and $c : split(T) \rightarrow 2$ is a coloring, then there is a condition $T' \leq T$ such that $c \upharpoonright split(T')$ is constant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Notation

The forcing

Near Coherence o Filters

The mode

#### Lemma 6

Let  $\mathcal{U}$  be an ultrafilter,  $T \in \mathsf{PT}(\varphi)$  be a condition,  $\dot{x}$  be a  $\mathsf{PT}(\varphi)$ -name. Then there is  $T' \leq T$  such that for all  $s \in split(T')$ , there is  $X_s \subseteq \omega$  satisfying the following two conditions:

1 It happens exactly one of the following:

#### Lemma 6

Near Coherence o Filters

The forcing

The model

## $\operatorname{Lemma} \mathfrak{b}$

Let  $\mathcal{U}$  be an ultrafilter,  $T \in \mathsf{PT}(\varphi)$  be a condition,  $\dot{x}$  be a  $\mathsf{PT}(\varphi)$ -name. Then there is  $T' \leq T$  such that for all  $s \in split(T')$ , there is  $X_s \subseteq \omega$  satisfying the following two conditions:

1 It happens exactly one of the following:

**1** For all  $s \in split(T')$ ,  $X_s \in U$ .

The forcing

### Lemma 6

Let  $\mathcal{U}$  be an ultrafilter,  $T \in \mathsf{PT}(\varphi)$  be a condition,  $\dot{x}$  be a  $\mathsf{PT}(\varphi)$ -name. Then there is  $T' \leq T$  such that for all  $s \in split(T')$ , there is  $X_s \subseteq \omega$  satisfying the following two conditions:

**1** It happens exactly one of the following:

**1** For all  $s \in split(T')$ ,  $X_s \in \mathcal{U}$ .

**2** For all  $s \in split(T')$ ,  $\omega \setminus X_s \in \mathcal{U}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### Lemma 6

The forcing

Let  $\mathcal{U}$  be an ultrafilter,  $\mathcal{T} \in \mathsf{PT}(\varphi)$  be a condition,  $\dot{x}$  be a  $\mathsf{PT}(\varphi)$ -name. Then there is  $T' \leq T$  such that for all  $s \in split(T')$ , there is  $X_s \subseteq \omega$  satisfying the following two conditions:

**1** It happens exactly one of the following:

**1** For all  $s \in split(T')$ ,  $X_s \in \mathcal{U}$ .

**2** For all  $s \in split(T')$ ,  $\omega \setminus X_s \in \mathcal{U}$ .

**2** For all  $s \in split(T')$ , for all  $n \in \omega$  and for all but finitely many  $k \in succ_{T'}(s)$ :

$$T' \upharpoonright s^{\frown}k \Vdash "\dot{x} \cap n = X_s \cap n"$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

#### ----

#### The forcing

Near Coherence Filters

The model

### Lemma 6(version 2)

Let  $\dot{x}$  be a  $PT(\varphi)$ -name for a function from  $\omega$  to  $\omega$ , and  $T \in PT(\varphi)$  be a condition which forces  $\dot{x}$  to be bounded by  $g \in \omega^{\omega}$ . Then there are  $T' \leq T$  and  $S \subseteq split(T')$  which gives  $\varphi$ -block structure to T', such that for all  $s \in S$ : For each  $r \in (T')_{F_s^{T'}}$  there is a function  $f_r \in \omega^{\omega}$  such that for all  $n \in \omega$ , for all but finitely many  $k \in succ_{T'}(r)$ :

$$T' \upharpoonright r^{\frown}k \Vdash ``\dot{x} \upharpoonright (|r|+n) = f_r \upharpoonright (|r|+n)"$$

### Laver Property

#### Notation

#### The forcing

Near Coherence o Filters

The mode

### Proposition 7 The forcing $PT(\varphi)$ has the Laver property.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

### P-points preservation

#### Notation

The forcing

Near Coherence o Filters

The mode

### Proposition 8 The forcing $PT(\varphi)$ preserves p-points.

### Near Coherence of Filters principle

Notation

The forcing

Near Coherence of Filters

The mode

### For $\mathcal{U}$ an ultrafilter on $\omega$ and $f \in \omega^{\omega}$ , $f(\mathcal{U}) = \{A \in \mathcal{P}(\omega) : f^{-1}[A] \in \mathcal{U}\}.$

## Near Coherence of Filters principle

Notation

The forcing

Near Coherence of Filters

The mode

### For $\mathcal{U}$ an ultrafilter on $\omega$ and $f \in \omega^{\omega}$ , $f(\mathcal{U}) = \{A \in \mathcal{P}(\omega) : f^{-1}[A] \in \mathcal{U}\}.$

### Definition(NCF, A. Blass)

Given two ultrafilters on  $\omega$ ,  $\mathcal{U}$  and  $\mathcal{V}$ , there is a finite to one function  $f \in \omega^{\omega}$  such that  $f(\mathcal{U}) = f(\mathcal{V})$ .

#### Notation

The forcing

Near Coherence of Filters

The mode

#### Lemma 9

The following statements are consequences of the Near Coherence of Filters principle:

**()** There are ultrafilters generated by less than  $\vartheta$  sets.

#### Notation

The forcing

Near Coherence of Filters

The model

### Lemma 9

The following statements are consequences of the Near Coherence of Filters principle:

**1** There are ultrafilters generated by less than  $\vartheta$  sets.

**2** The Rudin-Blass ordering is downward directed.

#### Notation

The forcing

Near Coherence of Filters

The mode

### Lemma 9

The following statements are consequences of the Near Coherence of Filters principle:

- **1** There are ultrafilters generated by less than  $\vartheta$  sets.
- 2 The Rudin-Blass ordering is downward directed.
- 3 p-points are dense in the Rudin-Blass ordering.

#### Notation

The forcing

Near Coherence of Filters

The mode

### Lemma 9

The following statements are consequences of the Near Coherence of Filters principle:

- **()** There are ultrafilters generated by less than  $\vartheta$  sets.
- 2 The Rudin-Blass ordering is downward directed.
- 3 p-points are dense in the Rudin-Blass ordering.
- **4** There are no *q*-points.

### Notation

The forcing

Near Coherence of Filters

The model

## Lemma 10

Let  $\mathcal{U}$  and  $\mathcal{V}$  be two ultrafilters on  $\omega$ . Then  $\mathsf{PT}(\varphi) \Vdash ``\dot{f}_{gen}(\mathcal{V}) = \dot{f}_{gen}(\mathcal{U})"$ . Moreover, for each ultrafilter  $\mathcal{U}$  on  $\omega$ ,  $\mathsf{PT}(\varphi) \Vdash ``\dot{f}_{gen}(\mathcal{U})$  is a *p*-point".

#### Notation

The forcing

#### Near Coherence of Filters

The mode

### Theorem(A. Blass, S. Shelah)

Let  $P_{\alpha} = \langle P_{\beta}, \dot{Q}_{\beta} : \beta < \alpha \rangle$  be a countable support iteration of proper forcings such that for all  $\beta < \alpha$ ,  $P_{\beta}$  forces that  $\dot{Q}_{\beta}$  preserves *p*-points. Then  $P_{\alpha}$  is proper and preserves *p*-points.

### The model

#### Theorem

The model

Let  $P_{\omega_2} = \langle P_{\beta}, \dot{Q}_{\beta} : \beta < \omega_2 \rangle$  be a countable support iteration of proper forcings such that for any  $\alpha < \omega_2$ ,  $P_{\alpha}$  forces that  $\dot{Q}_{\alpha}$  is of the form  $PT(\dot{\varphi})$ , and for any lscsm  $\dot{\varphi}$  which appears in the intermediate steps,  $PT(\dot{\varphi})$  appears cofinally often. Then  $P_{\omega_2}$  forces that for any  $F_{\sigma}$  ideal  $\mathscr{I}$ , there is no  $\mathscr{I}$ -ultrafilter. In particular, there is no Hausdorff ultrafilter in the resulting model.

### The model

#### Theorem

The model

Let  $P_{\omega_2} = \langle P_{\beta}, \dot{Q}_{\beta} : \beta < \omega_2 \rangle$  be a countable support iteration of proper forcings such that for any  $\alpha < \omega_2$ ,  $P_{\alpha}$  forces that  $\dot{Q}_{\alpha}$  is of the form  $PT(\dot{\varphi})$ , and for any lscsm  $\dot{\varphi}$  which appears in the intermediate steps,  $PT(\dot{\varphi})$  appears cofinally often. Then  $P_{\omega_2}$  forces that for any  $F_{\sigma}$  ideal  $\mathscr{I}$ , there is no  $\mathscr{I}$ -ultrafilter. In particular, there is no Hausdorff ultrafilter in the resulting model.

In the previous model NCF is true and the following holds true that for any  $F_\sigma$  ideal  $\mathscr{I}$  :

## The model

#### Theorem

The model

Let  $P_{\omega_2} = \langle P_{\beta}, \dot{Q}_{\beta} : \beta < \omega_2 \rangle$  be a countable support iteration of proper forcings such that for any  $\alpha < \omega_2$ ,  $P_{\alpha}$  forces that  $\dot{Q}_{\alpha}$  is of the form  $PT(\dot{\varphi})$ , and for any lscsm  $\dot{\varphi}$  which appears in the intermediate steps,  $PT(\dot{\varphi})$  appears cofinally often. Then  $P_{\omega_2}$  forces that for any  $F_{\sigma}$  ideal  $\mathscr{I}$ , there is no  $\mathscr{I}$ -ultrafilter. In particular, there is no Hausdorff ultrafilter in the resulting model.

In the previous model *NCF* is true and the following holds true that for any  $F_{\sigma}$  ideal  $\mathscr{I}$ :

 $(\forall X \subseteq [\omega]^{\omega})(|X| \leq \aleph_1 \Rightarrow (\exists f \in \mathsf{FtO})(f[X] \in \mathscr{I}^+))$ 

## Question

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Notation The forcing Near Coherence of Filters

The model

### Is there an $F_{\sigma\delta}$ ideal $\mathscr{I}$ , in ZFC, such that $\mathscr{I}$ -ultrafilters exist?

Notation The forcing Near Coherence o Filters

The model

Thank you very much for you attention!

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>