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almost subsets, contains all finite subsets of w, and w ¢ .#.

® A subset F C P(w) is a filter if it is closed under finite intersections and
under supersets, and contains all the cofinite subsets of w.

© An ultrafilter is a maximal filter respect to the inclusion relation C.

O Given an ideal ., the family of .#-positive sets is the complement of the
ideal .Z, thatis, # 7 =P(w)\ .£.

® Given a filter F on w, the dual ideal to F, denoted by F*, is defined as the
family of complements of elements from F, that is,

Fr={w\A:AcF}

In a similar fashion we define the dual filter to a given ideal .#, and write ./*.

® An ideal .# on w is a p-ideal if for any {A,: n € w} C .7 thereis B € .¥
such that for all n € w, A, C* B.
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We assume that all our ideals are tall, that is, for all A € [w]¥, there is an infinite
B € .# such that B C A.



Some examples of ideals on w

Introduction

Some typical ideals on w are the following:

1 ED is the ideal on w x w generated by {{n} x w: n € w} and the graphs of
functions from w to w.



Some examples of ideals on w

Introduction

Some typical ideals on w are the following:

1 ED is the ideal on w x w generated by {{n} x w: n € w} and the graphs of
functions from w to w.

2 EDsp is the restriction of ED to A = {(n,m) : m < n}.



Introduction

Some examples of ideals on w

Some typical ideals on w are the following:

1 ED is the ideal on w x w generated by {{n} x w: n € w} and the graphs of
functions from w to w.

2 EDsp is the restriction of ED to A = {(n,m) : m < n}.
3 Summable ideals: are defined by a function f : w — R* U {0} such that

Y hewf(n) =00, and A € Zf if and only if X,caf(n) < co. A typical example
is given by the function f(n) =1/(n+ 1).



Introduction

Some examples of ideals on w

Some typical ideals on w are the following:

1 ED is the ideal on w x w generated by {{n} x w: n € w} and the graphs of
functions from w to w.

2 EDsp is the restriction of ED to A = {(n,m) : m < n}.

3 Summable ideals: are defined by a function f : w — R* U {0} such that
Y hewf(n) =00, and A € Zf if and only if X,caf(n) < co. A typical example
is given by the function f(n) =1/(n+ 1).

4 Gr is the ideal on [w]? of graphs with finite chromatic number.



Introduction

Some examples of ideals on w

Some typical ideals on w are the following:

1 ED is the ideal on w x w generated by {{n} x w: n € w} and the graphs of
functions from w to w.

2 EDsp is the restriction of ED to A = {(n,m) : m < n}.

3 Summable ideals: are defined by a function f : w — R* U {0} such that
Y hewf(n) =00, and A € Zf if and only if X,caf(n) < co. A typical example
is given by the function f(n) =1/(n+ 1).

4 Gr is the ideal on [w]? of graphs with finite chromatic number.



Introduction

Some examples of ideals on w

Some typical ideals on w are the following:

1 ED is the ideal on w x w generated by {{n} x w: n € w} and the graphs of
functions from w to w.

2 EDsp is the restriction of ED to A = {(n,m) : m < n}.

3 Summable ideals: are defined by a function f : w — R* U {0} such that
Y hewf(n) =00, and A € Zf if and only if X,caf(n) < co. A typical example
is given by the function f(n) =1/(n+ 1).

4 Gr is the ideal on [w]? of graphs with finite chromatic number.

All of these ideals have complexity F,.
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where D(f) = {(n,m);n € w A m < f(n)}.

6 nwd is the ideal of nowhere dense subsets of the rationals.

7 conv is the ideal on [0,1] N Q generated by convergent sequences of rationals.

conv and Fin x Fin have complexity F,s,, while nwd has complexity F;s.
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Definition(J. Baumgartner, 1993)
Let . be an ideal and U/ an ultrafilter, both of them on w
@ U is an Z-ultrafilter if for any function f € w¥, there is A € U such that
flAl € 7.
® U is a weak Z-ultrafilter if for any finite to one function f € W, there is
A € U such that f[A] € .Z.
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© U is a Hausdorff ultrafilter if and only if U is a Gr-ultrafilter.
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Theorem
The following are relatively consistent with ZFC:

® (K. Kunen) There is no selective ultrafilter.
® (S. Shelah) There is no p-point.
® (A. W. Miller) There is no g-point.
® (A. W. Miller) There is no rapid ultrafilter.
@ (S. Shelah) There is no nwd-ultrafilter.
@ (S. Shelah) There is no ultrafilter with property M.



Introduction

A natural question that raises by watching the previous examples is the following:

Question

Is there a Borel ideal .# for which there is an .Z-ultrafilter U or a weak
A -ultrafilter?
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Theorem(O. Guzman Gonzélez, M. Hru3ak)

(O. Guzmién Gonzélez, M. Hrugdk) There is an F,;, ideal .# for which
& -ultrafilters exist generically.

Theorem(O. Guzman Gonzélez, M. Hru3ak)

It is relatively consistent that for any F,s ideal .# generic existence of
Z-ultrafilters does not hold, i. e., there is a filter with a small generating
set(< 2“) which can not be extended to an .#-ultrafilter.
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They left open the following question:

Question
Is there an F, ideal for which .Z-ultrafilters exist?

Answer: Consistently no.



Introduction

Theorem
It is relatively consistent with ZFC that for every F, ideal .#, .#-ultrafilters do not
exist. Not even weak .#-ultrafilters.
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@ (M. Benedikt) Is there an ultrafilter with property M? (Originally answered by
Shelah).
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Definition
A function ¢ : P(w) - R U {oo} is a lower semicontinuous submeasure, shorted as
Iscsm, if it satisfies the following:

0 p(w) =

@ (VA € P(w))(¢(A) = 0).

® (VA, B € P(w))(AC B — ¢(A) < ¢(B)
(VA, B € P(w))(p(AU B) < ¢(A) + ¢(B)).
(VA € P(w))(limp—00 (AN n) = p(A)).

(

o
(5]
0 (Vn € w)(p({n}) < o0).
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Theorem(Mazur)

An ideal .# is an F, ideal provided there is a Iscsm ¢ such that
J = Fin(p) = {A € P(w) : ¢(A) < 0}.
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2 For s € w<% and k € w, s~k denotes the sequence obtained by adding k to
the end of s.

3 For s € w<¥, |s| denotes the length of the sequence s.

4 A subset T C w<“ is a tree if for any s € T and n < |s|, it holds that
s [ ne€ T. The elements of T will be called nodes.

5 Foratree T Cw<¥ and s € T, the set of succesors of s in T is defined as
succr(s) ={kew:s ke T}.

6 For atree T C w<Y, the set of splitting nodes of T is defined as
split(T) ={s € T : |succr(s)| > 1}.

7 Foratree T Cw<*and s € T, T | s denotes the set of all nodes in T which
are C-comparable with s.
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Notation

8 Given a tree T C w<¥, we denote by (T), the set of all nodes in T with
length exactly n, thatis (T), ={s € T : |s| = n}.
9 Foratree T Cw<¥ and a non-empty F C w, define (T)r = J,cg(T)n
10 For a set S C w<¥, define the tree generated by S, denoted gt(S), as follows:

gt(S)={sew:(3FreS)(sCr)}
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Notation

Definition

A tree T C w<¥ is a superperfect tree if it satisfies the following conditions:
@ For all s € T, s is a strictly increasing sequence.
® For all s € T, there is r € split(T) such that s C r.
© For all s € split(T), succr(s) is infinite.

Definition

The Miller's forcing, denoted by PT, is the partial order whose members are all the
superperfect trees, ordered by set inclusion, that is, given S, T € PT, S < T if and
onlyif SC T.
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Notation

For T € PT, we denote by st(T) the stem of condition T, which is the unique
splitting node in T with minimal length.



The forcing

In what follows we fix an F, ideal .#, and ¢ denotes a Iscsm which defines the
ideal ., that is .# = Fin(yp).
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The forcing

The forcing Definicion
Let T € PT be a condition in the Miller's forcing and m € w. We say that a node
s€ Tis (T,p, m)-good, if there is F € [w]<“ such that:
©® |s| = min(F]).
® o(F])>m.
© (T [ s)rr C splitr(s).
We say that a tree T € PT is ¢-good if:
® Forany me w and any s € T, thereis a (T, ¢, m)-good node t € T
extending the node s.
@® For any node s € split(T), thereis a (T, ¢, m)-good node r € T for some
m € w, such that s € (T [ r)gr.



The forcing

The forcing

Definition
We define the forcing PT (i) as the set of all superperfect trees which are ¢-good,
ordered by set inclusion.



Lemma 1 (Axiom A)

The forcing

Lemma 1
The forcing PT(p) has Axiom A, therefore PT(¢) is a proper forcing.
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& -ultrafilters destruction

Definition
Let G be a generic filter for PT(p). We define the generic real Xge, as:

4 =N €

Definition . .
Let Xgen be the generic real added by G. We define the function fg, as:

fgen(n) = k <= n € (Xgen(k — 1), Xgen(k)]



& -ultrafilters destruction

The forcing

Lemma 2 .
PT(p) forces that for all A € [w]Y NV, ¢(fgen[A]) = 0.
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Continuous reading of names

Lemma 3
Let x be a PT(p)-name for an infinite subset of w, and let T € PT(y) be a
condition. There is T/ < T such that:

o FSZ:(T’) = FS-{(T)'
@® For each f € (T')

The forcing

g thereis a set Xy C w such that for all n € w and for
st(T’)

all but finitely many k € succy/(f):

T fklF“xNnn=XsNn"

Proof: induction over the size of Fs-’t—(T).



Continuous reading of names

Lemma 4
Let U be an ultrafilter, x a PT(¢)-name for an infinite subset of w, and
T € PT(p) a condition. Then there is T" < T such that:

© o(Fi(r) = e(Fir)/2

The forcing
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Continuous reading of names

Lemma 4
Let U be an ultrafilter, x a PT(¢)-name for an infinite subset of w, and
T € PT(p) a condition. Then there is T" < T such that:
(1) SD(FSI(IT/)) > ‘P(FSI(T))/Z
® For each f ¢ (T’),_.T/ there is a set Xf C w such that for all n € w, for all

st(T’)
but finitely may k € succr/(f):

The forcing

T 1 fklF“xNnn=XrNn"

© It happens exactly one of the following:
@ Forall f € (T ), Xrel.

st(T')

@® Forall f € (T)er ,w\Xrel.
st(T')

t(T



Continuous reading of names

The forcing

Lemma 5
Let T € PT(p) and c: split(T) — 2 is a coloring, then there is a condition
T’ < T such that c [ split(T’) is constant.
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@ It happens exactly one of the following:



Continuous reading of names

The forcing Lemma 6
Let U be an ultrafilter, T € PT(y) be a condition, x be a PT(y)-name. Then
there is T/ < T such that for all s € split(T’'), there is Xs C w satisfying the
following two conditions:

@ It happens exactly one of the following:
@ For all s € split(T'), Xs € U.



Continuous reading of names
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Continuous reading of names

The forcing Lemma 6
Let U be an ultrafilter, T € PT(y) be a condition, x be a PT(y)-name. Then
there is T/ < T such that for all s € split(T’'), there is Xs C w satisfying the
following two conditions:
@ It happens exactly one of the following:
@ For all s € split(T'), Xs € U.
@ Forall sesplit(T'), w\ Xs €U.
@® For all s € split(T"), for all n € w and for all but finitely many k € succr/(s):

T sTklIF“xNnn=XsNn"



The forcing

Continuous reading of names

Lemma 6(version 2)

Let x be a PT(®)-name for a function from w to w, and T € PT(y) be a condition
which forces x to be bounded by g € w*. Then there are T' < T and
S C split(T") which gives ¢-block structure to T’, such that for all s € S:

For each r € (T') g/ there is a function f, € w* such that for all n € w, for all

but finitely many k € succy(r):

T 1 rklE“x | (r|+n)=*f1](r]+n)"



Laver Property

The forcing

Proposition 7
The forcing PT(p) has the Laver property.
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The model

Proposition 8
The forcing PT () preserves p-points.

P-points preservation



Near Coherence of Filters principle

Near
Coherence of
Filters

For U an ultrafilter on w and f € w®, f(U) = {Ac P(w): F Al cU}.
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Near
Coherence of
Filters

For U an ultrafilter on w and f € w®, f(U) = {Ac P(w): F Al cU}.
Definition(NCF, A. Blass)

Given two ultrafilters on w, U and V, there is a finite to one function f € w® such
that f(U) = (V).
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principle:

@ There are ultrafilters generated by less than 0 sets.
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Near Coherence of Filters

Near
Coherence of
Filters

Lemma 9
The following statements are consequences of the Near Coherence of Filters
principle:

@ There are ultrafilters generated by less than 0 sets.

® The Rudin-Blass ordering is downward directed.

© p-points are dense in the Rudin-Blass ordering.

® There are no g-points.



Near Coherence of Filters

Near
Coherence of
Filters

Lemma 10 _ _
Let U and V' be two ultrafilters on w. Then PT(p) IF “fgen(V) = fgen(U)".
Moreover, for each ultrafilter U on w, PT(p) Ik “fzen(Uf) is a p-point”.



Near Coherence of Filters

Near
Coherence of
Filters

Theorem(A. Blass, S. Shelah)

Let P, = (Pg, Qg B <a)bea countable support iteration of proper forcings such
that for all 3 < «a, Pg forces that Qg preserves p-points. Then P, is proper and
preserves p-points.
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The model

Theorem

Let Py, = <P5,Q5 : B < wp) be a countable support iteration of proper forcings
such that for any a < wy, P, forces that Q,, is of the form PT(¢), and for any
Iscsm ¢ which appears in the intermediate steps, PT(¢) appears cofinally often.
Then P, forces that for any F, ideal .#, there is no .#-ultrafilter. In particular,
there is no Hausdorff ultrafilter in the resulting model.
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The model

Theorem

Let Py, = <P5,Q5 : B < wp) be a countable support iteration of proper forcings
such that for any a < wy, P, forces that Q,, is of the form PT(¢), and for any
Iscsm ¢ which appears in the intermediate steps, PT(¢) appears cofinally often.
Then P, forces that for any F, ideal .#, there is no .#-ultrafilter. In particular,
there is no Hausdorff ultrafilter in the resulting model.

The model

In the previous model NCF is true and the following holds true that for any F,
ideal .#:
(VX C [w]“)(IX] < Xy = (3f € FtO)(f[X] € #T))



Question

The model

Is there an F,4 ideal ., in ZFC, such that .#-ultrafilters exist?



Thank you very much for you attention!

«4Or «F>r « >
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